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LElTER TO THE EDITOR 

Ising model on a self-avoiding walk 

B K ChakrabartitP, A C MaggsS and R B StinchcombeS 
t Institute for Theoretical Physics, University of Cologne, 5000 Cologne 41, West Germany 
$ Department of Theoretical Physics, 1 Keble Road, Oxford OX1 3NP, UK 

Received 13 February 1985 

Abstract. Fluctuation arguments combined with basic features of the geometry of self- 
avoiding walks (SAWS) are shown to lead to zero transition temperature T, for the Ising 
model on a SAW. The king model on a non-random fractal representing the essential 
geometrical features of SAWS is treated exactly by a decimation method. It also leads to 
T, = 0, and to king SAW critical behavior different from that on an Ising chain. 

Recently the Ising model has been studied on a self-avoiding walk (SAW) in the context 
of the study of phase transitions on linear magnetic polymers (Chakrabarti and 
Bhattacharya 1983, 1985, Bhattacharya and Chakrabarti 1984a, b). In this model one 
considers Ising spins (with nearest-neighbour interactions) placed on a SAW embedded 
in a d-dimensional lattice. Unlike spins on a linear chain the spins on a SAW frequently 
have more than two nearest neighbours. In fact, on an infinite SAW the average number 
of nearest neighbours ze8 is given by zeff = 2 + ( z  - 1) - p ; z is the coordination number 
of the d-dimensional lattice and p ( < ( z  - 1)) is the connective constant for SAWS on 
the lattice (Bhattacharya and Chakrabarti 1984a). These extra neighbours are respon- 
sible for the system feeling the d-dimensional nature of the underlying lattice, producing 
a multiply connected structure with a distribution P ( L )  for the number of loops of 
length L. From the mapping of the SAW onto the n-vector model as n + 0 this distribution 
has the asymptotic form, for large L, 

where a is the specific heat exponent as n + 0 (de Gennes 1979). 
In this letter we are principally concerned with the existence, or otherwise, of a 

finite-temperature phase transition. Application of various kinds of mean-field type 
arguments would indicate a finite transition temperature for such a system (Bhat- 
tacharya and Chakrabarti 1984a). A complementary viewpoint is that the quasi-linear 
nature of a finite fraction of any SAW allows fluctuations to destroy the long range 
order at any finite temperature. This is the position taken in this letter which will be 
expanded upon below. 

These fluctuation arguments are difficult to formalise if exact quantitative results 
for the critical behaviour are required. Approximate small cell real space renormalisa- 
tion group (RSRG) calculations have already been used to study the system (Chakrabarti 
and Bhattacharya 1985). In the last part of this letter we introduce another approach 
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based on an idealised fractal system, designed to model the important features of an 
Ising model on a SAW, which is exactly solvable by decimation. 

We now consider the stability of the ordered state of an Ising system on a SAW. 
The argument used is closely related to that used when discussing the Ising model on 
a one- or higher-dimensional lattice. However there turns out to be a crucial difference 
between the geometry of domain walls in an Ising system on a SAW and an Ising system 
on a pure Euclidean lattice in two or more dimensions, which shows that comparison 
of the fractal dimensionality with the usual lower critical dimensionality (of pure 
lattices) is not enough to determine the stability of the ordered phase in general (see 
also Boccara and Havlin 1984). 

Let us consider two spins at sites A and B separated by a large distance. Examination 
of a typical randomly generated configuration indicates that the correlations between 
A and B are transmitted by m essentially independent paths. This independence derives 
from the long tail in the distribution of loop lengths given by (1). One expects m to 
diverge as the separation between A and B become large. One way to break the 
correlations between A and B is to introduce a single domain wall at an arbitrary point 
on each of the m independent paths between A and B. This can happen because, 
although the internal energy of the system will increase by mJ (J is the exchange 
interaction) when the domain is formed the entropy will dominate the free energy for 
sufficiently large separations. 

Let us consider the ordered state as defining the zero of free energy for the system. 
Then, as stated above, to break the m bonds between A and B requires internal energy 
mJ. The number of ways that this break can occur can be estimated as R" where R 
is the length of a typical path linking the two points. Thus an upper bound on the 
free energy of the system is given by 

F =  ni- Tm In R. (2) 

Since R can become very large this shows that if the SAW is well described by the 
above picture, as we believe, then the ordered state is unstable and T, = 0. 

The difference between the argument given above and that for a pure lattice in 
more than one dimension comes in the estimate for the entropy. Since the m routes 
are largely independent in the SAW, the domain wall between A and B can become 
very rough without increasing the internal energy. Thus there are a large number of 
independent configurations which can destroy the order. On a pure Euclidean lattice 
one can ask a similar question as to the number of energetically equivalent configur- 
ations which can separate two regions of the lattice. Compared with the SAW, this 
number grows much less quickly with the size of the regions considered because any 
roughening of the domain wall involves an increase in energy. Thus long range order 
remains for small but finite temperatures in pure Euclidean lattices with d > 1. As an 
example consider the stability of droplets on a pure two-dimensional lattice. If the 
perimeter of the droplet is m then the number of distinct droplet configurations for 
large m, or equivalently the number of SAW loops, is of order p"'m-('-a) where p and 
a are as above (de Gennes 1979). This leads to a change in free energy for formation 
of a droplet 

SF = mJ - mT In p +O(ln m ) .  (3) 

This is positive for T small. Thus the ordered state is stable against droplet formation 
for this standard pure lattice example. 
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The characteristic of the SAW geometry essential for the consideration of the low 
temperature Ising static behaviour appears to be the existence of long chain paths 
folding back on themselves with a frequency related to the loop distribution (1). A 
non-random fractal model incorporating this feature and having a similar form for the 
loop length distribution is now introduced, and the Ising model critical behaviour is 
solved exactly for it. Again it will be found that the transition is at zero temperature. 

The fractal is a limit of a hierarchy in which the nth member, shown in figure 1 (b), 
corresponds to a single bond in the ( n  + 1)th member (figure l (a ) ) .  

A 
0 

ial ( 6 )  IC1 

Figure 1. Successive generations in the construction of a fractal model. 

To show that this construction gives rise to a loop probability distribution of type 
( l ) ,  consider a further member (figure l ( c ) )  of the hierarchy. By considering the 
relationship of figures l (b )  and (c)  it is seen that in one step of the construction, the 
number of loops, and the loop length, change by r + s and r respectively, where r, s 
are respectively the number of bonds in the chain sections and the loop in figure 1 (b).  
A simple scaling argument then shows that the loop distribution for the fractal is ( 1 )  
with 

1 -a =ln( r+s) / ln  r. (4) 

The exact discussion of the Ising critical behaviour on the fractal uses the parameters 
t ,  t’ for two successive stages in the fractal construction, where t is the usual Ising 
thermal variable ?= tanh K ,  K = J / k g T  The relation between t and t’ is found by 
tracing out the intermediate spins in figure 1 (b) .  This results in 

t ’ =  t ‘ ( - )  = R ( t ) .  

This is the renormalisation transformation corresponding to the fractal construction, 
which is analogous to length scaling by a dilation factor b = r +  1. It can easily be 
shown that for r >  1 the only unstable fixed point of (5) is t* = 1. Thus 

T, = 0. ( 6 )  
So no fractals of this type have a finite temperature phase transition. To the extent to 
which these fractals have the crucial geometric characteristics of the SAW, the Ising 
system on the SAW would have T, = 0. 

T, = 0 is a true critical point (the fixed point t* = 1 is unstable, so the correlation 
length 5 diverges there, for r 3  1 (see below)). Now consider whether the critical 
behaviour there is different from that of an Ising chain. The (thermal) eigenvalue A 
of (5) at the fixed point t* = 1 is A = r, that is, the number of ‘cutting bonds’ in figure 
l (b )  (cf Stinchcombe 1983). Inserting this and the dilation factor b into the usual 
length scaling relationships gives the critical behaviour of the correlation length 5 as 

t a ( e 2 K ) ”  v = In( r + l)/ln r. (7)  
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(For a non-pathological result we need r > 1 ; cf Gefen et a1 (1983).) For the fractal 
the critical behaviour is thus in general different from the Ising chain where v = 1, and 
this difference must also be expected for the Ising system on the SAW, if the fractal 
model represents it adequately. 

The Heisenberg system on the fractal representation of the SAW can be discussed 
in a similar manner. For the classical version of the model the low temperature thermal 
scaling can be found without difficulty using techniques developed elsewhere (Stinch- 
combe 1979), and leads, as expected, to a zero transition temperature (for r 3  1).  
However now the low temperature critical behaviour is 

(cc T-", v = In( r +  l) / ln( r + s/(s + 1)). (8) 

In conclusion we have examined the problem of the Ising model on a SAW from 
a viewpoint which emphasises the importance of fluctuations occurring in the essentially 
linear parts of a SAW. The two calculations of this letter both indicate that fluctuations 
are strong enough to destroy any long range order at any finite T. Similarly the 
dynamics of spins on a SAW could also be studied (see e.g. Bhattacharya and Chakrabarti 
1984b). Finally, we point out that in the case of king spins placed on the distinct 
sites visited by a random (non-interacting) walk one might expect a finite transition 
temperature on a two-dimensional lattice where the walk is sure to visit the origin 
many times. In high enough dimensions, where self intersections become rare, the 
transition would again occur at zero temperature. 

BKC is grateful to Professor R J Elliott for the hospitality of the Department of 
Theoretical Physics, Oxford where this work was done. 
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